Folgen
Sai Praneeth Karimireddy
Sai Praneeth Karimireddy
Sonstige NamenSai Praneeth Reddy Karimireddy, Sai Praneeth Reddy
Postdoc, UC Berkeley
Bestätigte E-Mail-Adresse bei berkeley.edu - Startseite
Titel
Zitiert von
Zitiert von
Jahr
SCAFFOLD: Stochastic Controlled Averaging for Federated Learning
SP Karimireddy, S Kale, M Mohri, SJ Reddi, SU Stich, AT Suresh
ICML 2020 - International Conference on Machine Learning, 2019
16462019
Error Feedback Fixes SignSGD and other Gradient Compression Schemes
SP Karimireddy, Q Rebjock, SU Stich, M Jaggi
ICML 2019 - International Conference on Machine Learning, 2019
4162019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
T Vogels, SP Karimireddy, M Jaggi
NeurIPS 2019 - Conference on Neural Information Processing Systems, 2019
2302019
The Error-Feedback Framework: Better Rates for SGD with Delayed Gradients and Compressed Communication
SU Stich, SP Karimireddy
JMLR 2020 - Journal of Machine Learning Research, 2019
216*2019
Why are adaptive methods good for attention models?
J Zhang, SP Karimireddy, A Veit, S Kim, SJ Reddi, S Kumar, S Sra
NeurIPS 2020 - Conference on Neural Information Processing Systems, 2019
192*2019
Mime: Mimicking Centralized Stochastic Algorithms in Federated Learning
SP Karimireddy, M Jaggi, S Kale, M Mohri, SJ Reddi, SU Stich, AT Suresh
NeurIPS 2021 - Conference on Neural Information Processing Systems, 2020
176*2020
A Field Guide to Federated Optimization
J Wang*, Z Charles*, Z Xu*, G Joshi*, HB McMahan, M Al-Shedivat, ...
arXiv preprint arXiv:2107.06917, 2021
1452021
Learning from History for Byzantine Robust Optimization
SP Karimireddy, L He, M Jaggi
ICML 2021 - International Conference on Machine Learning, 2020
1012020
Byzantine-Robust Learning on Heterogeneous Datasets via Bucketing
SP Karimireddy*, L He*, M Jaggi
ICLR 2022 - International Conference on Learning Representations, 2021
81*2021
Quasi-Global Momentum: Accelerating Decentralized Deep Learning on Heterogeneous Data
T Lin, SP Karimireddy, SU Stich, M Jaggi
ICML 2021 - International Conference on Machine Learning, 2021
592021
Secure Byzantine-Robust Machine Learning
L He, SP Karimireddy, M Jaggi
arXiv preprint arXiv:2006.04747, 2020
442020
RelaySum for Decentralized Deep Learning on Heterogeneous Data
T Vogels*, L He*, A Koloskova, T Lin, SP Karimireddy, SU Stich, M Jaggi
NeurIPS 2021 - Conference on Neural Information Processing Systems, 2021
402021
PowerGossip: Practical Low-Rank Communication Compression in Decentralized Deep Learning
T Vogels, SP Karimireddy, M Jaggi
NeurIPS 2020 - Conference on Neural Information Processing Systems, 2020
39*2020
Accelerating Gradient Boosting Machine
H Lu*, SP Karimireddy*, N Ponomareva, V Mirrokni
AISTATS 2020 - International Conference on Artificial Intelligence and …, 2019
332019
Global linear convergence of Newton's method without strong-convexity or Lipschitz gradients
SP Karimireddy, SU Stich, M Jaggi
NeurIPS 2019 Workshop 'Beyond First Order Methods in ML', 2018
332018
Assignment techniques for crowdsourcing sensitive tasks
LE Celis, SP Reddy, IP Singh, S Vaya
Proceedings of the 19th ACM Conference on Computer-Supported Cooperative …, 2016
302016
FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings
JO Terrail, SS Ayed, E Cyffers, F Grimberg, C He, R Loeb, P Mangold, ...
NeurIPS 2022 - Conference on Neural Information Processing Systems, 2022
272022
On Matching Pursuit and Coordinate Descent
F Locatello, A Raj, SP Karimireddy, G Rätsch, B Schölkopf, SU Stich, ...
ICML 2018 - Proceedings of the 35th International Conference on Machine Learning, 2018
252018
Agree to Disagree: Diversity through Disagreement for Better Transferability
M Pagliardini, M Jaggi, F Fleuret, SP Karimireddy
ICLR 2023 - International Conference on Learning Representations, 2022
242022
Efficient Greedy Coordinate Descent for Composite Problems
SP Karimireddy*, A Koloskova*, SU Stich, M Jaggi
AISTATS 2019 - International Conference on Artificial Intelligence and …, 2018
242018
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20