Folgen
Ying-Jiang Guo(Yingjiang Guo, 郭映江)
Ying-Jiang Guo(Yingjiang Guo, 郭映江)
Microsystem and Terahertz Research Center, China Academy of Engineering Physics
Bestätigte E-Mail-Adresse bei caep.ac.cn
Titel
Zitiert von
Zitiert von
Jahr
60-GHz compact dual-mode on-chip bandpass filter using GaAs technology
KD Xu, YJ Guo, Y Liu, X Deng, Q Chen, Z Ma
IEEE Electron Device Letters 42 (8), 1120-1123, 2021
1222021
Millimeter-wave on-chip bandpass filter based on spoof surface plasmon polaritons
YJ Guo, KD Xu, X Deng, X Cheng, Q Chen
IEEE Electron Device Letters 41 (8), 1165-1168, 2020
1062020
Novel surface plasmon polariton waveguides with enhanced field confinement for microwave-frequency ultra-wideband bandpass filters
YJ Guo, K Da Xu, Y Liu, X Tang
IEEE Access 6, 10249-10256, 2018
822018
Millimeter-wave E-plane waveguide bandpass filters based on spoof surface plasmon polaritons
Y Liu, KD Xu, J Li, YJ Guo, A Zhang, Q Chen
IEEE Transactions on Microwave Theory and Techniques 70 (10), 4399-4409, 2022
602022
High-order mode of spoof surface plasmon polaritons and its application in bandpass filters
KD Xu, S Lu, YJ Guo, Q Chen
IEEE Transactions on Plasma Science 49 (1), 269-275, 2020
592020
Spoof plasmonic waveguide developed from coplanar stripline for strongly confined terahertz propagation and its application in microwave filters
YJ Guo, K Da Xu, X Tang
Optics Express 26 (8), 10589-10598, 2018
572018
On-chip GaAs-based spoof surface plasmon polaritons at millimeter-wave regime
KD Xu, YJ Guo, Q Yang, YL Zhang, X Deng, A Zhang, Q Chen
IEEE Photonics Technology Letters 33 (5), 255-258, 2021
512021
Spoof surface plasmon polaritons based on balanced coplanar stripline waveguides
KD Xu, F Zhang, Y Guo, L Ye, Y Liu
IEEE photonics technology letters 32 (1), 55-58, 2019
472019
Terahertz broadband spoof surface plasmon polaritons using high-order mode developed from ultra-compact split-ring grooves
KD Xu, YJ Guo, X Deng
Optics Express 27 (4), 4354-4363, 2019
422019
60-GHz third-order on-chip bandpass filter using GaAs pHEMT technology
KD Xu, X Weng, J Li, YJ Guo, R Wu, J Cui, Q Chen
Semiconductor Science and Technology 37 (5), 055004, 2022
342022
High-order mode application of spoof surface plasmon polaritons in bandpass filter design
Y Liu, KD Xu, YJ Guo, Q Chen
IEEE Photonics Technology Letters 33 (7), 362-365, 2021
342021
Compact Millimeter-Wave On-Chip Dual-Band Bandpass Filter in 0.15-μm GaAs Technology
KD Xu, S Xia, Y Jiang, YJ Guo, Y Liu, R Wu, J Cui, Q Chen
IEEE Journal of the Electron Devices Society 10, 152-156, 2022
302022
Spoof surface plasmon polaritons developed from coplanar waveguides in microwave frequencies
J Li, J Shi, KD Xu, YJ Guo, A Zhang, Q Chen
IEEE photonics technology letters 32 (22), 1431-1434, 2020
302020
Quasi-reflectionless filters using simple coupled line and T-shaped microstrip structures
KD Xu, S Lu, YJ Guo, Q Chen
IEEE journal of radio frequency identification 6, 54-63, 2021
292021
Multiband terahertz absorbers using T-shaped slot-patterned graphene and its complementary structure
KD Xu, Y Cai, X Cao, Y Guo, Y Zhang, Q Chen
JOSA B 37 (10), 3034-3040, 2020
272020
Half-mode substrate integrated plasmonic waveguide for filter and diplexer designs
Y Cui, KD Xu, YJ Guo, Q Chen
Journal of Physics D: Applied Physics 55 (12), 125104, 2021
252021
Compact sext‐band bandpass filter based on single multimode resonator with high band‐to‐band isolations
J Ai, Y Zhang, KD Xu, Y Guo, WT Joines, QH Liu
Electronics Letters 52 (9), 729-731, 2016
192016
Tunable enhanced sensing of ferrite film using meander-shaped spoof surface plasmon polariton waveguide
YJ Guo, KD Xu, X Deng
Applied Physics Express 12 (11), 115502, 2019
182019
Compact dual‐band bandpass filter using defected SRR and irregular SIR
X Luo, X Cheng, J Han, L Zhang, F Chen, Y Guo, X Xia, X Deng
Electronics Letters 55 (8), 463-465, 2019
182019
Compact spoof surface plasmon polariton waveguides with simple configurations and good performance
S Lu, KD Xu, YJ Guo, Q Chen
IEEE Transactions on Plasma Science 49 (12), 3786-3792, 2021
172021
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20