Antonio D. Masegosa
Antonio D. Masegosa
IKERBASQUE/DeustoTech, Deusto Institute of Technology, University of Deusto
Bestätigte E-Mail-Adresse bei - Startseite
Zitiert von
Zitiert von
A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data
T Bogaerts, AD Masegosa, JS Angarita-Zapata, E Onieva, P Hellinckx
Transportation Research Part C: Emerging Technologies 112, 62-77, 2020
A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy
E Osaba, XS Yang, F Diaz, E Onieva, AD Masegosa, A Perallos
Soft Computing 21, 5295-5308, 2017
A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy
P Lopez-Garcia, E Onieva, E Osaba, AD Masegosa, A Perallos
IEEE Transactions on Intelligent Transportation Systems 17 (2), 557-569, 2015
A new fuzzy linguistic approach to qualitative Cross Impact Analysis
PJ Villacorta, AD Masegosa, D Castellanos, MT Lamata
Applied Soft Computing 24, 19-30, 2014
Good practice proposal for the implementation, presentation, and comparison of metaheuristics for solving routing problems
E Osaba, R Carballedo, F Diaz, E Onieva, AD Masegosa, A Perallos
Neurocomputing 271, 2-8, 2018
Ensemble classification for imbalanced data based on feature space partitioning and hybrid metaheuristics
P Lopez-Garcia, AD Masegosa, E Osaba, E Onieva, A Perallos
Applied Intelligence 49 (8), 2807-2822, 2019
Optimization and machine learning applied to last-mile logistics: A review
N Giuffrida, J Fajardo-Calderin, AD Masegosa, F Werner, M Steudter, ...
Sustainability 14 (9), 5329, 2022
GACE: A meta-heuristic based in the hybridization of Genetic Algorithms and Cross Entropy methods for continuous optimization
P Lopez-Garcia, E Onieva, E Osaba, AD Masegosa, A Perallos
Expert Systems with Applications 55, 508-519, 2016
A taxonomy of traffic forecasting regression problems from a supervised learning perspective
JS Angarita-Zapata, AD Masegosa, I Triguero
IEEE Access 7, 68185-68205, 2019
An algorithm comparison for dynamic optimization problems
IG Del Amo, DA Pelta, JR González, AD Masegosa
Applied Soft Computing 12 (10), 3176-3192, 2012
A cooperative strategy for solving dynamic optimization problems
JR González, AD Masegosa, IJ García
Memetic Computing 3 (1), 3-14, 2011
A framework for developing optimization-based decision support systems
JR González, DA Pelta, AD Masegosa
Expert Systems with Applications 36 (3), 4581-4588, 2009
A linguistic approach to structural analysis in prospective studies
PJ Villacorta, AD Masegosa, D Castellanos, MT Lamata
Advances on Computational Intelligence: 14th International Conference on …, 2012
Using spatial neighborhoods for parameter adaptation: An improved success history based differential evolution
A Ghosh, S Das, AK Das, R Senkerik, A Viktorin, I Zelinka, AD Masegosa
Swarm and Evolutionary Computation 71, 101057, 2022
An algorithm portfolio for the dynamic maximal covering location problem
JF Calderín, AD Masegosa, DA Pelta
Memetic Computing 9, 141-151, 2017
A taxonomy of food supply chain problems from a computational intelligence perspective
JS Angarita-Zapata, A Alonso-Vicario, AD Masegosa, J Legarda
Sensors 21 (20), 6910, 2021
Fuzzy models and resolution methods for covering location problems: an annotated bibliography
VC Guzmáan, AD Masegosa, DA Pelta, JL Verdegay
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems …, 2016
General-purpose automated machine learning for transportation: A case study of auto-sklearn for traffic forecasting
JS Angarita-Zapata, AD Masegosa, I Triguero
International Conference on Information Processing and Management of …, 2020
Cooperative strategies and reactive search: A hybrid model proposal
A Masegosa, F Mascia, D Pelta, M Brunato
Learning and Intelligent Optimization, 206-220, 2009
Algorithm portfolio based scheme for dynamic optimization problems
JF Calderín, AD Masegosa, DA Pelta
International Journal of Computational Intelligence Systems 8 (4), 667-689, 2015
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20