Daniel Selsam
Daniel Selsam
Bestätigte E-Mail-Adresse bei microsoft.com - Startseite
Titel
Zitiert von
Zitiert von
Jahr
Data programming: Creating large training sets, quickly
AJ Ratner, CM De Sa, S Wu, D Selsam, C Ré
Advances in neural information processing systems, 3567-3575, 2016
3032016
Venture: a higher-order probabilistic programming platform with programmable inference
V Mansinghka, D Selsam, Y Perov
arXiv preprint arXiv:1404.0099, 2014
1902014
Learning a SAT solver from single-bit supervision
D Selsam, M Lamm, B Bünz, P Liang, L de Moura, DL Dill
arXiv preprint arXiv:1802.03685, 2018
1532018
Guiding high-performance SAT solvers with unsat-core predictions
D Selsam, N Bjørner
International Conference on Theory and Applications of Satisfiability …, 2019
37*2019
Developing bug-free machine learning systems with formal mathematics
D Selsam, P Liang, DL Dill
arXiv preprint arXiv:1706.08605, 2017
322017
Congruence closure in intensional type theory
D Selsam, L de Moura
International Joint Conference on Automated Reasoning, 99-115, 2016
112016
Tabled Typeclass Resolution
D Selsam, S Ullrich, L de Moura
arXiv preprint arXiv:2001.04301, 2020
72020
Formal methods for probabilistic programming
D Selsam, P Liang, DL Dill
Proc. of the Probabilistic Programming Languages, Semantics, and Systems, 2018
12018
Sealing Pointer-Based Optimizations Behind Pure Functions
D Selsam, S Hudon, L de Moura
arXiv preprint arXiv:2003.01685, 2020
2020
Neural Networks and the Satisfiability Problem
D Selsam
Stanford University, 2019
2019
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–10