María Martínez Ballesteros
María Martínez Ballesteros
Bestätigte E-Mail-Adresse bei us.es
Titel
Zitiert von
Zitiert von
Jahr
Mining quantitative association rules based on evolutionary computation and its application to atmospheric pollution
M Martínez-Ballesteros, A Troncoso, F Martínez-Álvarez, JC Riquelme
Integrated Computer-Aided Engineering 17 (3), 227-242, 2010
642010
An evolutionary algorithm to discover quantitative association rules in multidimensional time series
M Martínez-Ballesteros, F Martínez-Álvarez, A Troncoso, JC Riquelme
Soft Computing 15 (10), 2065, 2011
462011
Discovering gene association networks by multi-objective evolutionary quantitative association rules
M Martínez-Ballesteros, IA Nepomuceno-Chamorro, JC Riquelme
Journal of Computer and System Sciences 80 (1), 118-136, 2014
352014
Enhancing the scalability of a genetic algorithm to discover quantitative association rules in large-scale datasets
M Martínez-Ballesteros, J Bacardit, A Troncoso, JC Riquelme
Integrated Computer-Aided Engineering 22 (1), 21-39, 2015
342015
Selecting the best measures to discover quantitative association rules
M Martínez-Ballesteros, F Martínez-Álvarez, A Troncoso, JC Riquelme
Neurocomputing, 2013
332013
A nearest neighbours-based algorithm for big time series data forecasting
RL Talavera-Llames, R Pérez-Chacón, M Martínez-Ballesteros, ...
International Conference on Hybrid Artificial Intelligence Systems, 174-185, 2016
252016
MRQAR: A generic MapReduce framework to discover quantitative association rules in big data problems
D Martín, M Martínez-Ballesteros, D García-Gil, J Alcalá-Fdez, F Herrera, ...
Knowledge-Based Systems 153, 176-192, 2018
192018
An approach to silhouette and dunn clustering indices applied to big data in spark
JM Luna-Romera, M del Mar Martínez-Ballesteros, J García-Gutiérrez, ...
Conference of the Spanish Association for Artificial Intelligence, 160-169, 2016
192016
An approach to validity indices for clustering techniques in big data
JM Luna-Romera, J García-Gutiérrez, M Martínez-Ballesteros, ...
Progress in Artificial Intelligence 7 (2), 81-94, 2018
182018
A study of the suitability of autoencoders for preprocessing data in breast cancer experimentation
L Macías-García, JM Luna-Romera, J García-Gutiérrez, ...
Journal of biomedical informatics 72, 33-44, 2017
172017
Evolutionary association rules for total ozone content modeling from satellite observations
M Martínez-Ballesteros, S Salcedo-Sanz, JC Riquelme, ...
Chemometrics and Intelligent Laboratory Systems 109 (2), 217-227, 2011
152011
Quantitative association rules applied to climatological time series forecasting
M Martínez-Ballesteros, F Martínez-Álvarez, A Troncoso, JC Riquelme
International Conference on Intelligent Data Engineering and Automated …, 2009
142009
Obtaining optimal quality measures for quantitative association rules
M Martínez-Ballesteros, A Troncoso, F Martínez-Álvarez, JC Riquelme
Neurocomputing 176, 36-47, 2016
132016
Analysis of measures of quantitative association rules
M Martínez-Ballesteros, JC Riquelme
International Conference on Hybrid Artificial Intelligence Systems, 319-326, 2011
132011
Machine learning techniques to discover genes with potential prognosis role in Alzheimer’s disease using different biological sources
M Martínez-Ballesteros, JM García-Heredia, IA Nepomuceno-Chamorro, ...
Information Fusion 36, 114-129, 2017
122017
Improving a multi-objective evolutionary algorithm to discover quantitative association rules
M Martínez-Ballesteros, A Troncoso, F Martínez-Álvarez, JC Riquelme
Knowledge and Information Systems 49 (2), 481-509, 2016
112016
External clustering validity index based on chi-squared statistical test
JM Luna-Romera, M Martínez-Ballesteros, J García-Gutiérrez, ...
Information Sciences 487, 1-17, 2019
72019
Inferring gene-gene associations from Quantitative Association Rules
M Martínez-Ballesteros, I Nepomuceno-Chamorro, JC Riquelme
11th International Conference on Intelligent Systems Design and Applications …, 2011
62011
MOPNAR-BigData: un diseno MapReduce para la extracción de reglas de asociación cuantitativas en problemas de Big Data
D Martín, M Martínez-Ballesteros, S Río, J Alcalá-Fdez, J Riquelme, ...
Actas de la XVI Conferencia de la Asociación Española para la Inteligencia …, 2015
32015
Autoencoded DNA methylation data to predict breast cancer recurrence: Machine learning models and gene-weight significance
L Macías-García, M Martínez-Ballesteros, JM Luna-Romera, ...
Artificial Intelligence in Medicine 110, 101976, 2020
22020
Das System kann den Vorgang jetzt nicht ausführen. Versuchen Sie es später erneut.
Artikel 1–20